KONTROL OPTIMUM LQR PADA MODEL LOVE AND HAPPINESS YANG MELIBATKAN PIHAK KETIGA

Authors

  • Khozin Mu’tamar - Jurusan Matematika, FMIPA, Universitas Riau
  • Supriadi Putra - Jurusan Matematika, FMIPA, Universitas Riau
  • Leli Deswita - Jurusan Matematika, FMIPA, Universitas Riau
  • Imran M - Jurusan Matematika, FMIPA, Universitas Riau

DOI:

https://doi.org/10.30606/aptk.v8i1.569

Keywords:

Linear model love and happiness with affair, linear quadratic regulator, optimal control

Abstract

Artikel ini membahas mengenai penerapan kontrol optimal berupa linear quadratic regulator (LQR) pada masalah model Love and Happiness Romeo dan Juliet yang melibatkan pihak ketiga. Fokus masalah yang dibahas adalah kondisi model yang tidak stabil. Optimal kontrol digunakan untuk mengontrol state yang mewakili Romeo sebagai bentuk treatment agar Romeo melepaskan hubungan dengan pihak ketiga. Pada akhir paper, akan dilakukan simulasi untuk melihat hasil dari penerapan kontrol pada masalah ini.

References

A.E. Bryson and Y.C. Ho., Applied

Optimal Control. Hemisphere,

New York, 1975

D. Satsangi and A.K. Sinha, Dynamics of

Love and Happiness: A

Mathematical Analysis.

International Journal Modern

Education and Computer Science.

DOI: 10.5815/ijmecs.2012.05.05.

Pages 31-37. 2012

F.J. Lewis and V.L. Syrmos, Optimal

Control, 2nd edition, John Wiley &

Sons, New York, 1995

F. Verhulst, Nonlinear Differential

Equations and Dyanmical System,

nd edition. Springer, Berlin, 1996

H.K. Khalil, Nonlinear System, 3rd edition,

Prentice Hall, New Jersey, 2002

J.C. Sprott, Dynamical Models of Love.

Nonlinear Dynamics, Psychology,

and Life Sciences. 8(2004) 303-314

J.F. Burl, Linear Optimal Control H2 and

H1 Methods. Addison-Wesley,

California, 1998

J. Sunday and D.J. Zirra and M.

Mijinyawa, A Computational

Approach to Dynamical Love

Model: The Romeo and Juliet

Scenario . International Journal of

Pure and Applied Sciences and

Technology. ISSN 2229 - 6107.

Pages 10-15. 2012

J. Wauer, D. Schwarzer, G.Q. Cai, Y.K.

Lin, Dynamical models of love

with time-varying fluctuations.

Applied Mathematics and

Computation. 188(2007):1535-

DOI

1016/j.amc.2006.11.026. 2006

K. Ghosh, Love between Two Individuals

in a Romantic Relationship: A

Newly Proposed Mathematical

Model. The 7th IMT-GT

International Conference on

Mathematics, Statistics and its

Applications. 978-974-231-812-3.

Pages 97-104. 2011

K. Ogata, Modern Control Engineering, 5th

edition. Prentice Hall, New York,

S.H. Strogatz, Nonlinear Dynamics and Chaos:

With Applications to Physics, Biology,

Chemistry and Engineering Reading.

Addison-Wesley, 1994.

Jurnal

Downloads

Published

2016-01-20