ALGORITMA FP-GROWTH UNTUK MENGANALISA POLA PEMBELIAN OLEH-OLEH

Authors

  • Yola Permata Bunda Universitas Tjut Nyak Dhien

Abstract

Ummi Aufa Judge Center is one of the companies that provide typical souvenirs of West Sumatra. Visitors who come are guests from outside of West Sumatra, the time given guide for shopping is very limited, and the placement of goods in the store is not in accordance with consumer behavior in buying goods simultaneously in one time. This study aims to increase sales at the Center By-By Ummi Aufa Hakim. The data to be processed in this study is taken from invoice sales transaction. Data is processed by the Association Rule  method using FP-Growth Algorithm, for testing results done with applications that have been designed using MySQL PHP programming language. The results of the test obtained the Association Rule s of products purchased simultaneously in one time, ie if you buy 250g Yellow Whisk, then buy Sj. Balado Redah 250gr with 20% support value and Confidence value 100%, if buy Ganepo 250gr, then buy Sj. Red Balado with 20% support value and Confidence 100% value, and if buy Krk. Small Kaliang 250gr, then buy Sj. Balado Redah 250gr with 20% support and Confidence 100%. From the test results can be seen that the application of data mining using FP-Growth Algorithm can be used to analyze consumer shopping patterns, and can be a recommendation in the layout of the product on the preparation rack. So the products are often purchased simultaneously placed adjacent by the store

References

ALIF, A., 2013. Komputasi cerdas untuk pemula. Malang: ABC Press.

Badrul, M. (2016). Algoritma Asosiasi Dengan Algoritma Apriori Untuk Analisa Data Penjualan. Jurnal Pilar Nusa Mandiri(2), 121-129.

Fitriyani. (2015). IMPLEMENTASI ALGORITMA FPGROWTH MENGGUNAKAN ASSOCIATION. Informatika.

Ganjir, M. (2015). Combining Apriori and FP Growth algorithms with Simulated Annealing for Optimized Association Rule Mining. 495-497.

Gheware, S. D. (2014). Data Mining: Task, Tools, Techniques and Applications. International Journal of Advanced Research in Computer and Communication Engineering, 8095-8098.

Kavitha, M. (2016). Comparative Study on Apriori Algorithm and Fp Growth Algorithm with Pros and Cons. 161-164.

KishorTiwari, V. (2013). A New Approach for Extracting Closed Frequent Patterns and their Association Rule s using Compressed Data Structure. International Journal of Computer Applications, 1-7.

Larasati, D. P. (2015). Analisis Dan Implementasi Algoritma FP-Growth Pada Aplikasi Smart Untuk Menentukan Market Basket Analysis Pada Usaha Retail ( Studi Kasus : Pt . X ) Analysis and Implementation of FP-Growth Algorithm in Smart Application To Determine Market Basket Analysi. 1(2), 749-755.

Meilani. (2015). Penentuan Pola Yang Sering Muncul Untuk Penerima Kartu Jaminan Kesehatan Masyarakat. Seminar Nasional "Inovasi dalam Desain dan Teknologi", 424-431.

Nur Rohman Ardani, N. F. (2016). Sistem Rekomendasi Pemesanan Sparepart Dengan Algoritma FP-Growth. 6-7.

Rahmawati, N. (2017). Aplikasi Data Mining Market Basket Analysis untuk Menemukan Pola Pembelian di Toko Metro Utama Balikpapan Application of Data Mining Market Basket Analysis to DeterminePurchase Pattern at Toko Metro Utama Balikpapan. 1-8.

Tampubolon, K. (2013). Implementasi Data Mining Algoritma Apriori Pada Sistem Persediaan Alat-Alat Kesehatan. Informasi dan Teknologi Ilmiah, 93-106.

Yudha Aditya Fiandra, S. D. (2017). Penerapan Algoritma C4.5 untuk Klasifikasi Data Rekam Medis berdasarkan International Classification Diseases (ICD-10). Jurnal Resti, 9-18

Downloads

Published

2020-01-21