Penentuan Tingkat Kesuburan Tanah Di Balai Penyuluhan Pertanian Perikanan Dan Kehutanan Dengan Menggunakan Algoritma Naive Bayes Dalam Data Mining
Keywords:
Naive Bayes, Soil Fertility, VBAbstract
A soil fertility is the ground state of the system in which water, air and nutrients in a sufficient state of balance and available according to crop needs, whether physical, chemical and biological soil, in other words is the fertile soil when the soil contains usur-elements required by plants. These elements are the variables determined kusuburan soil absorption capacity, degree of saturation of wet, clay content, organic matter content. The purpose of this study as follows, Applying database processing determining soil fertility in Agricultural Extension Center Naive Bayes algorithm by using the most appropriate for the accuracy of the indicators that have been determined, the use of Naive Bayes classification method to use to determine the similarity between the characteristics of the data in the database selector klasfikasi to select criteria based soil fertility in anarea. Based on the results of the discussion and testing can be concluded as follows, Information Systems Programme determination of the type of soil and the expected data from the previous user is transformed into a computerized, Is information system a system of determining the type of land use Naive Bayes methods can be useful in the futureReferences
David L, Olson dan Dursun Delen (2008), Advanced Data Mining Techniques. USA, Springer verlag
Berlin Heidlberg
Domingos. P dkk. 2007. On the optimality of the Simple Bayesian Classifier under Zero-One Loss.
Ehmer Khan Mohd.. 2010. Different Forms of Software Testing Techniques for Finding Error .
Emha dan Kusrini 2009, “Algoritma Data Mining”, Andi, Yogyakarta
Eniyati Sri.Jurnal Teknologi Informasi DINAMIK Volume 16, No.2, Juli 2011 : 171176
Fajar Astuti (2012), “Data Mining”, Andi, Yogyakarta
Foth, H.D. 1994. Dasar Ilmu Tanah. Terjemahan: Adisoemarto. Jakarta: Erlangga.
Istamar Syamsuri, dkk .2007 . Biologi untuk SMA Kelas XII Semester 1 . Jakarta : Erlangga.
Kusrini & Emha (2009), “Algoritma Data Mining”, Andi, Yogyakarta
Mewati Ayub, Proses Data Mining dalam Sistem Pembelajaran Berbantuan Komputer
Olson, David L.&Dursun Delen (2008), Advanced Data Mining Techniques. USA, Springer verlag
Berlin Heidlberg
Prasetyo Eko (2012), “Data Mining Konsep dan Aplikasi Menggunkan Matlab”, Andi, Yogyakarta.
Rozi Ahmad. H dan M. Izhak, 2007. Dasar-dasar Ilmu Tanah. Badan Kerjasama Perguruan Tinggi
Bagian Timur. Ujung Pandang