PROTOTIPE SISTEM PENDUKUNG KEPUTUSAN PENDETEKSIAN KONDISI BAYI DENGAN FUZZY TSUKAMOTO

Authors

  • Agung Setiawan Universitas Pasir Pengaraian
  • Budi Yanto Universitas Pasir Pengaraian
  • Kiki Yasdomi Universitas Pasir Pengaraian

Keywords:

SPK, Baby Condition, Fuzzy, Fuzzy Tsukamoto

Abstract

Baby condition is a condition that is vulnerable to environmental changes, especially weather changes. Knowledge of a mother in maintaining baby health should also be considered, especially in terms of nutritional intake. A healthy baby's condition affects the baby's growth and development. The creation of a decision support system should be preceded by collecting and analyzing data according to need. In this study using baby feeding variables, namely Body Temperature (37.70c), Fuss (2.4), Restless (4.5), BABSering (3.7), BABEncer (5.6), Bloating (3.5), Nausea (3.7), Vomiting (3.2 ), Stomach Pain (2.7) and Itchy Skin (2.8). The results of the calculations will result in defoliation as follows: Measles (1.48), Septis (1.48), Diarrhea (1.48), ISPA (7.36), Enteritis (0.77), Miliaria (1.48), OMP (1.48) and Varicela (1.48). The range of fuzzy values ranges from 0 to 1, so the results obtained that the baby has enteritis or stomach problems. The calculation of defuzification obtained result of 8.1, so the condition of the baby is very sick and should be handled immediately by bringing to the medical personnel

References

Agus Naba (2009). Belajar Cepat Fuzzy Logic Menggunakan Matlab . Yogyakarta. Penerbit Andi.

Sri Kusumadewi dan Hari Purnomo (2010). Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Yogyakarta. Graha Ilmu.

Ika Kurnianti Ayuningtiyas, Fajar Saptono dan Taufiq Hidayat (2007). Sistem Pendukung Keputusan Penanganan Kesehatan Balita Menggunakan Penalaran Fuzzy Mamdani. Seminar Nasional Aplikasi Teknologi Informasi. Yogyakarta.

I Made Sukarsa dan I Made Suwija Putra (2010). Sistem Berbasis Pengetahuan untuk Kesehatan dan Perawatan Bayi. Lontar Komputer.

Iman attarzadeh and Siew Hock Ow (2005). Improving the Accuracy of Software Cost Estimation Model Based on a Fuzzy Logic Model. World applied Science Journal.

Putu Masik Prihatini (2011). Metode Ketidakpastian dan Kesamaran dalam Sistem Pakar. Lontar Komputer.

Setiono dan Sofa Marwoto (2010). Pemodelan Logika Fuzzy Terhadap Kerusakan Jembatan Beton. Media Teknik Sipil UNS.

Sri Kusumadewi (2007). Sistem Fuzzy untuk Klasifikasi Indikator Kesehatan Daerah. Yogyakarta. Seminar TEKNOIN.

Sri Kusumadewi (2009). Penentuan Tingkat Resiko Penyakit menggunakan Tsukamoto Fuzzy Inference System. Seminar Nasional II : The Application of Technology Toward a Better Life. Yogyakarta.

Tati Hartati dan Luthfi Kurnia (2012). Sistem Pakar Mendiagnosa Penyakit Umum yang Sering di Derita Balita Berbasis Web di Dinas Kesehatan Kota Bandung. Jurnal Komputer dan Informatika (KOMPUTA).

Yuni Widhiastiwi (2007). Model Fuzzy Dengan Metode Tsukamoto. Yogyakarta. Informatika.

UNICEF Indonesia (2012). Ringkasan Kajian Ibu dan Anak. www.unicef.or.id.

Downloads

Published

2018-07-19