Analisis Kinerja Struktur Data Kd-Tree Pada Metode K-Nearest Neighbors
Keywords:
KD-Tree, K-Nearest Neighbors, ArrayAbstract
K-Nearest Neighbors is a commonly used classification technique that can be categorized into instance-based classification method. The performance of KNN is mostlydetermined by the size of the training data. This research compared and analyzed KD-Tree andArray data structures on KNN implementation. Dataset used in this research has largemultidimensional features. From the experiment conducted we can conclude that KD-Tree datastructure has better and relatively stable performance compared to Array data structure.References
Java Machine Learning. (2008). Class KD-Tree. Diakses pada 15 Maret 2016 dari World Wide
Web: http://java-ml.sourceforge.net/ap i/0.1.7/net/sf/javaml/co re/kdtree/KDTree .html
Lukito, Y., Chrismanto, A., (2015). Perbandingan Metode-Metode Klasifikasi Untuk Indoor
Positioning System. Jurnal Teknik Informatika dan Sistem Informasi. 1 (2): 123-131.
Mitchel, T.M. (1997) Machine Learning. Portland: McGraw-Hill.
Skiena, S.S. (2008) The Algorithm Design Manual (2nd Edition). London: Springer-Verlag.
Downloads
Published
2016-08-06
Issue
Section
Articles